
AgilePT 2010

CUTE GUTs for GOOD
Good Unit Tests drive Good OO Design

Prof. Peter Sommerlad
HSR - Hochschule für Technik Rapperswil
Institute for Software
Oberseestraße 10, CH-8640 Rapperswil
peter.sommerlad@hsr.ch
http://ifs.hsr.ch
http://wiki.hsr.ch/PeterSommerlad

Plus SCRUM Multi-Touch
Table Demo Video

mailto:peter.sommerlad@hsr.ch
mailto:peter.sommerlad@hsr.ch
http://ifs.hsr.ch
http://ifs.hsr.ch
http://wiki.hsr.ch/PeterSommerlad
http://wiki.hsr.ch/PeterSommerlad

© Prof. Peter Sommerlad, AgilePT 2010 2

Peter Sommerlad
peter.sommerlad@hsr.ch

• Work Areas
o Refactoring Tools (C++, Scala, Groovy,

Ruby,...) for Eclipse
o Decremental Development

(make SW 10% its size!) + Tools!
o C++ Standardization
o Patterns and Software Engineering

 Pattern-oriented Software Architecture (POSA)
 Security Patterns

• Background
o Diplom-Informatiker

(Univ. Frankfurt/M, Germany)
o Siemens Corporate Research - Munich
o itopia corporate information technology,

Zurich (Partner)
o Professor for Software

HSR Rapperswil, Switzerland
Head Institute for Software

 Credo:

•People create Software
o communication
o feedback
o courage

•Experience through Practice
o programming is a trade
o Patterns encapsulate practical

experience

•Pragmatic Programming
o test-driven development
o automated development
o Simplicity: fight complexity

© Prof. Peter Sommerlad, AgilePT 2010

What is GOOD?
GOOd (OO) Design

• Simple
o C.A.R Hoare and E. Dijkstra

• Encapsulation and Information Hiding
o D. Parnas

•High Cohesion & Low Coupling
o L. Constantine

•DRY - Don't Repeat Yourself
o Pragmatic Programmers (A. Hunt, D. Thomas)

• SOLID
o R. Martin (Uncle Bob)

•Relatively easy to detect violation, BUT also too
easy to violate

3

AgilePT 2010 Simple Code © Prof. Peter Sommerlad

Famous Quotes by
Sir C.A.R.(Tony) Hoare

• Inside every large program,
there is a small program trying to get out.

• There are two ways of constructing a software design:
o one way is to make it so simple that there are

obviously no deficiencies, and
o the other way is to make it so complicated that there

are no obvious deficiencies.

• The first method is far more difficult.
4

© Prof. Peter Sommerlad, AgilePT 2010

SOLID principles

5

© Prof. Peter Sommerlad, AgilePT 2010

SRP - Single Responsibility
Principle

6

© Prof. Peter Sommerlad, AgilePT 2010

OCP - Open Closed
Principle

7

© Prof. Peter Sommerlad, AgilePT 2010

LSP - Liskov Substitution
Principle

8

© Prof. Peter Sommerlad, AgilePT 2010

ISP - Interface
Segregation Principle

9

© Prof. Peter Sommerlad, AgilePT 2010

DIP - Dependency
Inversion Principle

10

© Prof. Peter Sommerlad, AgilePT 2010

What are GUTs?
Good Unit Tests (A. Cockburn)

• are GOOD, DRY and Simple:
o no control structures

 tests run linear: Arrange, Act, Assert
 have the test assertion in the end

o test one thing at a time
 not a test per function/method, but a test per function call
 a test per equivalence class of input values

• have no (order) dependency between them
o leave no traces for others to depend on

• all run successfully if you deliver (or check in)

• have a good coverage of production code
• are often created Test-First

11

© Prof. Peter Sommerlad, AgilePT 2010

Caution:
sales pitch ahead!

12

© Prof. Peter Sommerlad, AgilePT 2010

What is CUTE?
C++ Unit Testing Easier

•A simple to use C++ Unit Testing framework
o Header-only distribution! no library to link against
o simple test functions, explicit test registration
o 5 macros to learn: FAIL, ASSERT, ASSERT_EQUAL,

ASSERT_EQUAL_DELTA, ASSERT_THROWS
 5 variations with suffix M to provide additional message

o customizable output

• an accompanying Eclipse CDT plug-in
o code-generation for test and test case registration
o red-green bar viewer with test navigation and

equality failure diff-viewer
o tests also run in MS VS 2003/2008/2010

13

© Prof. Peter Sommerlad, AgilePT 2010

Why CUTE and not
CPPUnit/GTest?

• CPPUnit and GoogleTest are JUnit clones
o try to re-create features available in Java (and alike)

but not suitable to (standard) C++
o complicated use and design (GTest)
o provide too much than needed regularly
o too many fancy macros, restricted customizability

• C++ is not Java
o values are first class citizens, objects second class

 automatic copy and assignment
 deterministic life-time of variables and values

o (generic) types create values
 and provide customization hooks

o (generic) functions are (almost) first class
14

© Prof. Peter Sommerlad, AgilePT 2010

CUTE Plug-in

15

© Prof. Peter Sommerlad, AgilePT 2010

C++ Code Coverage with
CUTE Eclipse plug-in

• The CUTE Eclipse plug-in also provides code
coverage visualization
o for GCC gcov
o like eclEMMA for Java

•Run tests with code coverage shows uncovered
production code
o and also not-run test code

•We also are creating a plug-in for C/C++ header
file optimization that visualizes "static coverage"
o this allows you to find unused declarations and

definitions in your (header) files
16

© Prof. Peter Sommerlad, AgilePT 2010

C++ static code analysis
Gimpel Software's lint

• (Agile) Java programmers (should) use FindBugs
o static analysis tool that detects common

programming mistakes

• (Agile) .NET programmers (should) use FXCop

•C/C++ programmers (might) use PC-Lint
(Windows) or FlexeLint (other OSs)
o lint's output is text-only and can be overwhelming

• IFS' students created a FlexeLint CDT plug-in
o visualizes lint messages in Problems View and editor
o provides Quick-fixes for correcting errors/

suppressing false positives
o will be available commercially (by end of 2010)

17

© Prof. Peter Sommerlad, AgilePT 2010

Agile C++ and IFS

•CUTE testing framework
o free open source

•CUTE Eclipse CDT plug-in with code coverage
o free open source

•C++ Refactoring in Eclipse CDT
o free open source (some features not yet integrated)
o more useful C++ refactorings to come

• Lint viewer plug-in for Eclipse CDT
o plan to make it commercially available

•ReDHead header file optimization plug-in for CDT
o plan to make it commercially available
o organize #include like Java "organize imports"

18

© Prof. Peter Sommerlad, AgilePT 2010

End of sales pitch :-)

19

© Prof. Peter Sommerlad, AgilePT 2010

An Observation

• If the design of code is not GOOD
‣ then writing automated (unit) tests for it is hard

to impossible

and vice versa

• If it is hard to write automated (unit) tests
‣ then the design of the code is often bad

20

Unit tests are a good indicator of design quality!

© Prof. Peter Sommerlad, AgilePT 2010

My Assumption

•Writing automated unit tests improves design
o almost automatically

• under the pre-requisite that we refactor the code
accordingly
o sometimes needed up front to achieve initial

testability
 there is a whole book by Michael Feathers on that topic:

"Working effectively with Legacy Code"

21

© Prof. Peter Sommerlad, AgilePT 2010

Example:
A hard to test Date class

22

•How can we check
if Date() actually
fills in the date
correctly?

•How can we check
that adding days or
another Date is
correct?

•making everything
public is not "nice"

#ifndef DATE_H_
#define DATE_H_

class Date {
	 int day, month, year;
	 static const int daysPerMonth[];
public:
	 Date(); // today
	 Date(int day, int month, int year);
	 virtual ~Date();
	 void print();
	 void add(Date const &period);
	 void add(int days);
};

#endif /* DATE_H_ */

© Prof. Peter Sommerlad, AgilePT 2010

A test program for Date

•What does it tell
us?

•Can we be sure it
works?

•What's bad about
it?

• Is this really a
GUT?

23

#include "Date.h"

int main(){
	 Date d;
	 d.print();
	 d.add(1); // tomorrow
	 d.print();
	 d.add(Date(1,0,0)); // the day after
	 d.print();
	 d.add(Date(0,1,0)); // next month
	 d.print();
	 d.add(Date(0,0,1)); // next year
	 d.print();
}

© Prof. Peter Sommerlad, AgilePT 2010

Date's implementation
reveals more ugliness

24

#include "Date.h"
#include <ctime>
#include <iomanip>
const int Date::daysPerMonth[]
	 ={31,28,31,20,31,30,31,31,30,31,30,31};

Date::Date() {
	 time_t tnow=time(0);
	 struct tm now(*localtime(&tnow));
	 day = now.tm_mday;
	 month = now.tm_mon;//+1;
	 year = now.tm_year;//+1900;
}

Date::Date(int day, int month, int year)
:day(day),month(month),year(year)
{}

Date::~Date() {
	 // TODO Auto-generated destructor stub
}
void Date::add(const Date & other)
{
	 day += other.day;
	 month += other.month;
	 year += other.year;
}

void Date::print()
{
	 std::cout << std::setfill('0')
	 << std::setw(2) << day << "."
	 << std::setfill('0') << std::setw(2)
	 << month <<"."<<std::setw(4)<<year<<"\n";
}
void Date::add(int days)
{
	 day += days;
	 while (days > daysPerMonth[month-1]
 ||days>29&&month==2&&!(year%4)){
	 	 days -=daysPerMonth[month-1];
	 	 if (month==2 && !(year%4)) days--;
	 	 month++;
	 	 while (month>12){
	 	 	 month = 1;
	 	 	 year++;
	 	 }
	 }
}

© Prof. Peter Sommerlad, AgilePT 2010

Try to write tests

•A first CUTE test
o constructor wouldn't throw -> create a Date.
o not very interesting, do not want to check for

internals (might change -> test case breaks)

• need to refactor first
o need means to check Date's output
o observation print() depends on global variable cout -

> pass in std::ostream& as parameter

25

void Date::print()
{
	 std::cout << std::setfill('0')
	 << std::setw(2) << day << "."
	 << std::setfill('0') << std::setw(2)
	 << month <<"."<<std::setw(4)<<year<<"\n";
}

© Prof. Peter Sommerlad, AgilePT 2010

Example
enable output checking

26

#include "cute.h"
#include "ide_listener.h"
#include "cute_runner.h"

#include "Date.h"
void constructAndOutputDate() {
	 Date d(18,5,2010);
	 std::ostringstream out;
	 d.print(out);
	 ASSERT_EQUAL("18.05.2010",out.str());
}

void runSuite(){
	 cute::suite s;
	 //TODO add your test here
	 s.push_back(CUTE(constructAndOutputDate));
	 cute::ide_listener lis;
	 cute::makeRunner(lis)(s, "The Suite");
}

int main(){
 runSuite();
}

#ifndef DATE_H_
#define DATE_H_
#include <iosfwd>

class Date {
	 int day, month, year;
	 static const int daysPerMonth[];
public:
	 Date();
	 Date(int day, int month, int year);
	 virtual ~Date();

	 void print();
	 void print(std::ostream &out)const;
	 void add(Date const &other);
	 void add(int days);
};

#endif /* DATE_H_ */

void Date::print(){
	 print(std::cout);
}
void Date::print(std::ostream &out)const
{
	 out << std::setfill('0')
	 << std::setw(2) << day << "."
	 << std::setfill('0') << std::setw(2)
	 << month <<"."<<std::setw(4)<<year;
}

© Prof. Peter Sommerlad, AgilePT 2010

add print(std::ostream&)
overload

• extract std::cout dependency
• class now better usable

o can output Date values through std::cerr, std::clog,
stringstreams, files, etc.

• const'ness of member function print enables
even more uses

 should add const to print() also

•Only checking Date's output is too little testing
o would be better if we could ASSERT_EQUAL on Date

values
 introduce operator== on Date's

27

© Prof. Peter Sommerlad, AgilePT 2010

Example
introduce operator==

28

#ifndef DATE_H_
#define DATE_H_
#include <iosfwd>
class Date {
	 int day, month, year;
	 static const int daysPerMonth[];
public:
	 Date();
	 Date(int day, int month, int year);
	 virtual ~Date();
	 void print();
	 void print(std::ostream &out)const;
	 void add(Date const &other);
	 void add(int days);

	 bool operator==(Date const &other) const;
	 bool operator!=(Date const &other) const {
	 	 return !(*this == other);
	 }
};
#endif /* DATE_H_ */

bool Date::operator==(const Date & other) const
{
	 return day==other.day
	 	 && month == other.month
	 	 && year == other.year;
}

void equalsDateIsReflexive() {
	 Date d(18, 5, 2010);
	 ASSERT_EQUAL(d,d);
}
void equalsDateTwoDates() {
	 Date d(18, 5, 2010);
	 ASSERT_EQUAL(Date(18,5,2010),d);
}
void equalsDateDifferentDatesAreUnequal(){
	 ASSERT(Date(18,5,2010)!=Date(19,5,2010));
}

•Date now better
usable

•more to do
o e.g., operator<()

 use boost/operators.hpp
to automatically add
further relational ops

 but first let's fix other
problems

© Prof. Peter Sommerlad, AgilePT 2010

Other Observations

•C++ uses (overloaded) operators for addition,
subtraction and for output

• adding Dates doesn't make sense
o need something similar representing time periods

 Introduce class Period

o Subtracting 2 Dates should result in a Period

•Default date of "today" hard to test, because of
environment dependency.

•Adjustment of days, months and years
inconsistent (not shown today -> Homework)
o does not work with negative "days"
o tuple representation might not be optimal for that

29

© Prof. Peter Sommerlad, AgilePT 2010

More interactive examples

• demo in Eclipse CDT with CUTE plug-in

30

© Prof. Peter Sommerlad, AgilePT 2010

Conclusion

• GUTs are beneficial for GOOD
o Even if tests are added after the fact they can help

improving your design
 However, Refactoring is essential

• CUTE is easy to use (especially with Eclipse)
o simpler than alternatives (CPPUnit, GTest)
o more modern C++ (values, std:: library, no explicit

memory management needed)
o requires boost and/or std::tr1 or C++0x

 USE_TR1, USE_STD0X macros control impl. used

o used in teaching and by international users
 open source

o provides also test coverage view with gcov
31

© Prof. Peter Sommerlad, AgilePT 2010

Outlook

•C++ as a language does not stand in your way if
you want to be Agile
o the language (especially with the new standard to be

finished soon) combines high-level abstractions
without performance penalties or platform limitations
(i.e., VM availability)

•We are creating tools for catching up with an
agile working style for C++ developers
o and are filling some gaps with really innovative

solutions, i.e., with our ReDHeaD (ReDuce Header
Dependencies) plug-in

•
32

© Prof. Peter Sommerlad, AgilePT 2010

Sales pitch again, sorry

33

© Prof. Peter Sommerlad, AgilePT 2010

SCRUM
on multi-touch table

34

AgilePT 2010 Simple Code © Prof. Peter Sommerlad

Bachelor Thesis 2010
Scrum Table

•Goal: Simpler & more efficient
SCRUM project management

•User Interface Technology:
Microsoft Surface

•Project Repository: MS Team
Foundation Server 2010
o very un-agile UI in its plain form

 i.e. multiple dialogs needed to create
a single story card/backlog item

•Videos:
o http://www.youtube.com/watch?

v=upr6ifM4cl4 watch
o http://www.youtube.com/watch?

v=FvGs3PJu5Iw watch
35

http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=upr6ifM4cl4
http://www.youtube.com/watch?v=FvGs3PJu5Iw
http://www.youtube.com/watch?v=FvGs3PJu5Iw

AgilePT 2010 Simple Code © Prof. Peter Sommerlad

Scrum Table
Screen Shots

36

Process
Overview

Sprint
Planning

Scrum
Poker

Daily
Scrum

© Prof. Peter Sommerlad, AgilePT 2010

Questions?

•more on CUTE at http://r2.ifs.hsr.ch/cute
o and http://ifs.hsr.ch/Cute.5820.0.html

• or contact me at peter.sommerlad@hsr.ch
37

mailto:peter.sommerlad@hsr.ch
mailto:peter.sommerlad@hsr.ch

